Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(e^(-2*x)-(10*e^-x)-(6*x))'The calculation above is a derivative of the function f (x)
(e^(-2*x)-(10*e^-x))'+(-(6*x))'
(e^(-2*x))'+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*((-2*x)'*ln(e)+(-2*x*(e)')/e)+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*((-2*x)'*ln(e)+(-2*x*0)/e)+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*(((-2)'*x-2*(x)')*ln(e)+(-2*x*0)/e)+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*((0*x-2*(x)')*ln(e)+(-2*x*0)/e)+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*((0*x-2*1)*ln(e)+(-2*x*0)/e)+(-(10*e^-x))'+(-(6*x))'
e^(-2*x)*((-2*x*0)/e-2*ln(e))+(-(10*e^-x))'+(-(6*x))'
e^((-2)'*x-2*(x)')+(-(10*e^-x))'+(-(6*x))'
e^(0*x-2*(x)')+(-(10*e^-x))'+(-(6*x))'
e^(0*x-2*1)+(-(10*e^-x))'+(-(6*x))'
0^(-2*x)+(-(10*e^-x))'+(-(6*x))'
(10)'*e^-x-2*e^(-2*x)+10*(e^-x)'+(-(6*x))'
0*e^-x-2*e^(-2*x)+10*(e^-x)'+(-(6*x))'
0*e^-x-2*e^(-2*x)+10*ln(e)*e^-x+(-(6*x))'
0*e^-x-2*e^(-2*x)+10*e^-x+(-(6*x))'
6*(x)'-2*e^(-2*x)-10*e^-x+(6)'*x
6*(x)'-2*e^(-2*x)-10*e^-x+0*x
0*x-2*e^(-2*x)-10*e^-x+6*1
-2*e^(-2*x)-(10*e^-x)-6
| Derivative of 5e^(4t-17) | | Derivative of (-20-3r)^6 | | Derivative of (t^2-19)^101 | | Derivative of (25x-9)^61 | | Derivative of e^(-2x)-10e^(-x)-18x | | Derivative of 1500/x | | Derivative of 1500c^-1 | | Derivative of 1500/c | | Derivative of -0.5*x^-0.5*sin(x^0.5) | | Derivative of sin(x)(ln(5x)) | | Derivative of x^2(cos(3x)) | | Derivative of 3000/x | | Derivative of 2ln(x1x2)-4 | | Derivative of 5cos(5ln(x)) | | Derivative of cos(e^((x)^5sin(x))) | | Derivative of 2^((8x)-5) | | Derivative of 2^(8x-5) | | Derivative of 2^8x-5 | | Derivative of sin(3*t) | | Derivative of (7/10)x^(10/7) | | Derivative of x^0.9 | | Derivative of 340 | | Derivative of 14/5x | | Derivative of 4x^2ln(6x) | | Derivative of 16-6cos(x) | | Derivative of (-x^2)/98 | | Derivative of e^(ln(3)) | | Derivative of 11/x^8 | | Derivative of ln(sin(3x^2-2)) | | Derivative of -0.8cos(1.25t) | | Derivative of 1/8 | | Derivative of ((X^2)/500) |